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When we have a design in which we have both randonfixettivariables, we have what
is often called a mixed model. Mixed models have begun yoguiamportant role in
statistical analysis and offer many advantages ovee mnaditional analyses. At the same
time they are more complex and the syntax for sag#veaalysis is not always easy to set
up. My original plan was to put together a document thaitdd at many different kinds
of designs and the way to use them. However | have deitidetican accomplish many
of my goals by restricting myself to the analysis @e@ed measures designs. This is a
place where such models have important advantaged.igmare the use of mixed
models to handle nested factors (other than subjeatalbe that is an even more
complicated system.

A large portion of this document has benefited from Chaliaen Maxwell & Delaney
(2004)Designing experiments and analyzing data. They have one of the clearest
discussions that | know. | am going a step beyond thempbeaby including a between-
groups factor as well as a within-subjects (repeated messgdactor. For now my
purpose is to show the relationship between mixed modeltharahalysis of variance.
The relationship is far from perfect, but it gives usxawn place to start. More
importantly, it allows us to see what we gain and wetose by going to mixed models.
In some ways | am going through the Maxwell & Delanegptar backwards, because |
am going to focus primarily on the use of tapeatedcommand in SA®roc mixed. |

am doing that because it fits better with the tramsifrom ANOVA to mixed models.

My motivation for this document came from a questidtedsy Rikard Wicksell at
Karolinska University in Sweden. He had a randomized clitizd with two treatment
groups and measurements at pre, post, 3 months, and 6 nkidisthsoblem is that some
of his data were missing. He considered a wide range objposslutions, including
“last trial carried forward,” mean substitution, arstwise deletion. In some ways
listwise deletion appealed most, but it would mean theddss much data. One of the
nice things about mixed models is that we can use all afateewe have. If a score is
missing, it is just missing. It has no effect on otherss from that same patient.

Another advantage of mixed models is that we don’t baee consistent about time. For
example, and it does not apply in this particular exanipd@e subject had a follow-up
test at 4 months while another had their follow-up ae& months, we simply enter 4 (or
6) as the time of follow-up. We don’t have to worry ttrety couldn’t be tested at the
same intervals.

A third advantage of these models is that we do not ttagssume sphericity or
compound symmetry in the model. We can do so if we wantvb can also allow the
model to select its own set of covariances or usar@mnwce patterns that we supply. |
will start by assuming sphericity because | want to stimaparallels between the output
from mixed models and the output from a standard repeatadures analysis of



variance. | will then delete a few scores and shoatwlfffect that has on the analysis.
Finally I will use Expectation Maximization (EM) to imputeissing values and then feed
the newly complete data back into a repeated measiN@d/A to see how those results
compare.

The Data

| have created data to have a number of characterishiese are two groups — a Control
group and a Treatment group, measured at 4 times. Thessedna labeled as 0 (pretest),
1 (one month posttest) 3 (3 months follow-up) and 6 (6 heofatlow-up). | created the
treatment group to show a sharp drop at post-test andstistain that drop (with slight
regression) at 3 and 6 months. The Control group declioegysbver the 4 intervals but
does not reach the low level of the Treatment groupreTaie noticeable individual
differences in the Control group, and some subjects shst@eper slope than others. In
the Treatment group there are individual differencdsval but the slopes are not all that
much different from one another. You might think oftas a study of depression, where
the dependent variable is a depression score (e.g. Beckd3epr Inventory) and the
treatment is drug versus no drug. If the drug worked about lafowall subjects the
slopes would be comparable and negative across timehé-ocontrol group we would
expect some subjects to get better on their own ame $o stay depressed, which would
lead to differences in slope for that group. These faetsgortant because when we get
to the random coefficient mixed model the individual défeces will show up as
variances in intercept, and any slope differencesshdw up as a significant variance in
the slopes. For the standard ANOVA individual and for mixedi@ms using theepeated
command the differences in level show up as a Subjesiteind we assume that the
slopes are comparable across subjects.

Some of the printouts that follow were generated usi&g Broc mixed, but | give the
SPSS commands as well. (I also give syntas for R, watn you that running this
problem under R, even if you have Pinheiro & Bates (2008)rig difficult. | only give
these commands for one analysis, but they arevelatasy to modify for related
analyses.

The data follow. Notice that to set this up for ANOVA¢c GLM) we read in the data
one subject at a time. (You can see this is the datarsh This will become important
because we will not do that for mixed models.

Group Subj TimeO Timel Time3 Time6 1 11 310 300 253 190
1 1 296 175 187 242 1 12 310 245 200 170
1 2 376 329 236 126
1 3 309 238 150 173
1 4 222 60 82 135
1 5 150 271 250 266
1 6 316 291 238 194
1 7 321 364 270 358
1 8 447 402 294 266
1 9 220 70 95 137
1 10 375 335 334 129




Group Subj TimeO Timel Time3 Time6 2 19 329 62 62 6
2 13 282 186 225 134 2 20 292 139 104 184
2 14 317 31 85 120 2 21 275 94 135 137
2 15 362 104 144 114 2 22 150 48 20 85
2 16 338 132 91 77 2 23 319 68 67 12
2 17 263 94 141 142 2 24 300 138 114 174
2 18 138 38 16 95

A plot of the data follows:

Estimated Marginal Means

Estimated Marginal Means of Dependent Variable

300

250

200

150

100

The cell means and standard deviations follow.

4. Group * Time

Measure: MEASURE 1

95% Confidence Interval
Group Time Mean Std. Error | Lower Bound | Upper Bound
Control 1 304.333 21.503 259.739 348.927
2 256.667 24.061 206.768 306.566
3 215.750 19.594 175.115 256.385
4 197.167 18.552 158.692 235.641
Treatment 1 280.417 21.503 235.823 325.011
2 94.500 24.061 44.601 144.399
3 100.333 19.594 59.698 140.969
4 106.667 18.552 68.192 145.141




Group means

Estimates
Measure: MEASURE 1
95% Confidence Interval
Group Mean Std. Error | Lower Bound | Upper Bound
Control 243.896 16.405 209.874 277.918
Treatment 145.479 16.405 111.457 179.501

Grand Mean = 194.688

The results of a standard repeated measures analysisarfoe with no missing data and
using SASProc GLM follow. You would obtain the same results using the SPS
Univariate procedure.

proc GLM ;
cl ass group;

nodel timel time2 tine3 tinmed4 = group/ nouni;
repeated time 4 (0, 1, 3, 6) polynomial /summary printm
run;
The GLM Procedure
Repeated Measures Analysis of Variance
Tests of Hypotheses for Between Subjects Effects
Source DF Type III SS Mean Square F Value Pr > F
group 1 230496.0000 230496.0000 17.89 0.0003
Error 22 283514.9583 12887.0436

The GLM Procedure
Repeated Measures Analysis of Variance
Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type III SS Mean Square F Value Pr > F G -G H-F
time 3 313917.7083 104639.2361 37.61 <.0001 <.0001 <.0001
time*group 3 59791.7500 19930.5833 7.16  0.0003 0.0014 0.0007
Error(time) 66 183603.5417 2781.8718
Greenhouse-Geisser Epsilon 0.7302
Huynh-Feldt Epsilon 0.8510
The GLM Procedure
Repeated Measures Analysis of Variance
Analysis of Variance of Contrast Variables
Contrast Variable: time_1 The Linear Effect of Time (intervals = 0,1,2,3)
Source DF Type III SS Mean Square F Value Pr > F
Mean 1 168155.6270 168155.6270 36.14 <.0001
group 1 1457.2401 1457.2401 0.31 0.5814
Error 22 102368.7996 4653.1273



Contrast Variable: time_2 The quadratic Effect of Time (intervals = 0,1,2,3)

Source DF Type III SS Mean Square F Value Pr > F
Mean 1 96614.20130 96614.20130 48.47 <.0001
group 1 25235.52002 25235.52002 12.66 0.0018
Error 22 43851.09686 1993.23168
Contrast Variable: time_3
Source DF Type III SS Mean Square F Value Pr > F
Mean 1 49147.88005 49147.88005 28.92 <.0001
group 1 33098.98990 33098.98990 19.48 0.0002
Error 22 37383.64520 1699.25660

Here we see that each of the effects in the ovenallysis is significant. We don't care
very much about the group effect because we expected lmathsyio start off equal at
pre-test. What is important is the interaction, ansl dignificant ap = .0003. Clearly the
drug treatment is having a differential effect on the gnmups, which is what we wanted
to see. The fact that the Control group seems to be aigpppthe number of symptoms
over time is to be expected and not exciting, althoughowdd look at these simple
effects if we wanted to. We would just run two analyseg on each group. | would not
suggest pooling the variances to calculatéhough that would be possible.

In the printout above | have included tests on lingaadratic, and cubic trend that will
be important later. However you have to read this miffdy than you might otherwise
expect. The first test for the linear component shows @h36.14 for “mean” and ah
of 0.31 for “group.” Any other software that | have used waaplace “mean” with
“Time” and “group” with “Group % Time.” In other words wave a significant linear
trend over time, but the linear x group contrast is mptiscant. | don’'t know why they
label them that way. (Well, | guess | do, but it’s tie way that | would do it.) | should
also note that my syntax specified the intervalsifoet so that SAS is not assuming
equally spaced intervals. The fact that the linear tvesmsl not significant for the
interaction means that both groups are showing abostthe linear trend. But notice
that there is a significant interaction for the quadrat

Mixed Model

The use of mixed models represents a substantial difiefemm the traditional analysis
of variance. For balanced designs the results witlecout to be the same, assuming that
we set the analysis up appropriately. But the actuasstati approach is quite different
and ANOVA and mixed models will lead to different resultseewever the data are not
balanced or whenever we try to use different, and oftere logical, covariance
structures.

First a bit of theory. WithifProc Mixed therepeatedcommand plays a very important
role in that it allows you to specify different co\arce structures, which is something



that you cannot do und@roc GLM. You should recall that iRroc GLM we assume
that the covariance matrix meets our sphericity apsiomand we go from there. In
other words the calculations are carried out withctheariance matrix forced to
sphericity. If that is not a valid assumption we argauble. Of course there are
corrections due to Greenhouse and Geisser and Hyunh anddaelditey are not optimal
solutions.

But what does compound symmetry, or sphericity, reaflyesent? (The assumption is
really about sphericity, but when speaking of mixed modelst mriters refer to
compound symmetry, which is actually a bit more restec}iiMost people know that
compound symmetry means that the pattern of covariamazsrelations is constant
across trials. In other words, the correlation betwaahl and trial 2 is equal to the
correlation between trial 1 and trial 4 or trial 3 anal ¥, etc. But a more direct way to
think about compound symmetry is to say that requiresathstibjects in each group
change in the same way over trials. In other wordsltyges of the lines regressing the
dependent variable on time are the same for all sbjeat that way it is easy to see that
compound symmetry can really be an unrealistic assumptisome of your subjects
improve but others don't, you do not have compound symmatryreake an error if you
use a solution that assumes that you do. Fortuntety Mixed allows you to specify
some other pattern for those covariances.

We can also get around the sphericity assumption usingANOVA output fromProc
GLM, but that too has its problems. Both standard univariatd &d MANOVA GLM
will insist on complete data. If a subject is missingreene piece of data, that subject is
discarded. That is a problem because with a few missisgredtions we can lose a great
deal of data and degrees of freedom.

Proc Mixed with repeatedis different. Instead of using a least squares solunbigh
requires complete data, it uses a maximum likelihoadatisol, which does not make that
assumption. (We will actually use a Restricted Maxinukelihood (REML) solution.)
When we have balanced data both least squares and REMitadlce the same
solution if we specify a covariance matrix with compdgymmetry. But even with
balanced data if we specify some other covariance xrtagisolutions will differ. At first
| am going to force sphericity by additgpe = cs(which stands for compound
symmetry) to theepeatedstatement. | will later relax that structure.

The first analysis below uses exactly the same datar&roc GLM, though they are
entered differently. Here data are entered in whatlisa&“long form,” as opposed to the
“wide form” used forProc GLM. This means that instead of having one line of data for
each subject, we have one line of data for each odts@ny So with four measurement
times we will have four lines of data for that subject.

Because we have a completely balanced design (equalessizgs and no missing data)
and because the time intervals are constant, thégesd this analysis will come out
exactly the same as those Rmoc GLM so long as | speciftype = cs The data follow:



data W cksel | Long;
i nput subj time group dv;

cards;

1 0 1.00 296.00 9 0 1.00 220.00 17 0 2.00 263.00
1 1 1.00 175.00 9 1 1.00 70.00 17 1 2.00 94.00
1 3 1.00 187.00 9 3 1.00 95.00 17 3 2.00 141.00
1 6 1.00 242.00 9 6 1.00 137.00 17 6 2.00 142.00
2 0 1.00 376.00 10 0 1.00 375.00 18 0 2.00 138.00
2 1 1.00 329.00 10 1 1.00 335.00 18 1 2.00 38.00
2 3 1.00 236.00 10 3 1.00 334.00 18 3 2.00 16.00
2 6 1.00 126.00 10 6 1.00 129.00 18 6 2.00 95.00
3 0 1.00 309.00 11 0 1.00 310.00 19 0 2.00 329.00
3 1 1.00 238.00 11 1 1.00 300.00 19 1 2.00 62.00
3 3 1.00 150.00 11 3 1.00 253.00 19 3 2.00 62.00
3 6 1.00 173.00 11 6 1.00 170.00 19 6 2.00 6.00
4 0 1.00 222.00 12 0 1.00 310.00 20 0 2.00 292.00
4 1 100 60.00 12 1 1.00 245.00 20 1 2.00 139.00
4 3 100 82.00 12 3 1.00 200.00 20 3 2.00 104.00
4 6 1.00 135.00 12 6 1.00 170.00 20 6 2.00 184.00
5 0 1.00 150.00 13 0 2.00 282.00 21 0 2.00 275.00
5 1 1.00 271.00 13 1 2.00 186.00 21 1 2.00 94.00
5 3 1.00 250.00 13 3 2.00 225.00 21 3 2.00 135.00
5 6 1.00 266.00 13 6 2.00 134.00 21 6 2.00 137.00
6 0 1.00 316.00 14 0 2.00 317.00 22 0 2.00 150.00
6 1 1.00 291.00 14 1 2.00 31.00 22 1 2.00 48.00
6 3 1.00 238.00 14 3 2.00 85.00 22 3 2.00 20.00
6 6 1.00 194.00 14 6 2.00 120.00 22 6 2.00 85.00
7 0 1.00 321.00 15 0 2.00 362.00 23 0 2.00 319.00
7 1 1.00 364.00 15 1 2.00 104.00 23 1 2.00 68.00
7 3 1.00 270.00 15 3 2.00 144.00 23 3 2.00 67.00
7 6 1.00 358.00 15 6 2.00 114.00 23 6 2.00 12.00
8 0 1.00 447.00 16 0 2.00 338.00 24 0 2.00 300.00
8 1 1.00 402.00 16 1 2.00 132.00 24 1 2.00 138.00
8 3 1.00 294.00 16 3 2.00 91.00 24 3 2.00 114.00
8 6 1.00 266.00 16 6 2.00 77.00 24 6 2.00 174.00

/* The following lines plot the data */
Symbol1 I = join v = none r = 12;
Proc gplot data = wicklong;
Plot dv*time = subj/ nolegend;
By group;
Run;

/* This is the main Proc Mixed procedure. */
Proc Mixed data = WickselllLong;

class group subj time;

model dv = group time group*time;

repeated time/subject = subj type = cs rcorr;
run;

| have put the data in three columns to save space, B&Srnthey would be entered as
one long column.

The first set of commands plots the results of eadividual subject broken down by
groups. Earlier we saw the group means over time. Nosaneee how each of the
subjects stands relative the means of his or her grouipe lide¢al world the lines would
start out at the same point on thaxis (i.e. have a common intercept) and move in
parallel (i.e. have a common slope). That isn’'t quitatwtappens here, but whether those
are chance variations or systematic ones is somettangve will look at later. We can



see in the Control group that a few subjects declinerlyneser time and a few other
subjects, especially those with lower scores declifiesatand then increase during
follow-up.

Plots (Group 1 = Control, Group 2 = Treatment)

oroup=1L

or oup=2

For Proc Mixed we need to specify that group, time, and subj are clssbles. This

will cause SAS to treat them as factors. The mod&dsient tells the program that we
want to treat group and time as a factorial design andrgee the main effects and the
interaction. (I have not appended a “/s” to the end @htbdel statement because | don't
want to talk about the parameter estimates of treateféauts at this point, but most
people would put it there.) Thepeatedcommand tells SAS to treat this as a repeated
measures design, that the subject variable is named,“anldjthat we want to treat the
covariance matrix as exhibiting compound symmetry, eveugiinan the data that |
created we don't appear to come close to meeting thatgion. The specification



“rcorr” will ask for the estimated correlation matrixve could use “r’ instead of “rcorr,”
but that would produce a covariance matrix, which is hacdetérpret.)

The results of this analysis follow, and you can kaéthey very much resemble our
analysis of variance approach usigc GLM.

The SAS System

The Mixed Procedure

Model Information

Data Set WORK.WICKLONG
Dependent Variable dv
Covariance Structure Compound Symmetry
Subject Effect subj
Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method | Between-Within

Dimensions

Covariance Parameters | 2

Columns in X 15
Columnsin Z 0
Subjects 24

Max Obs Per Subject | 4

Number of Observations

Number of Observations Read 96




Number of Observations

Number of Observations Used 96

Number of Observations Not Used || O

Estimated R Correlation Matrix for subj 1

Row Coll Col2 Col3 Col4

1 1.0000 | 0.4793 | 0.4793 || 0.4793

2 0.4793 | 1.0000 || 0.4793 | 0.4793

3 0.4793 | 0.4793 | 1.0000 | 0.4793

4 0.4793 | 0.4793 || 0.4793 | 1.0000

Covariance Parameter Estimates

Cov Parm | Subject | Estimate

cS subj | 2536.07

Residual 2754.98

Fit Statistics

-2 Res Log Likelihood | 1000.6

AIC (smaller is better) | 1004.6

AICC (smaller is better) | 1004.8

BIC (smaller is better) | 1007.0




Null Model Likelihood Ratio Test

DF | Chi-Square | Pr > ChiSq
1 23.47 <.0001
Type 3 Tests of Fixed Effects
Effect Num DF | Den DF | F Value | Pr>F
group 1 22 18.17 0.0003
time 3 66 37.58 <.0001
group*time || 3 66 7.20 0.0003

On the first page of this printout there is nothing pafaidy exciting except that it tells
us that it uses a covariance structure of compound symanradrthat the solution is via
REML, the solution that we will use for most proble@s the second page we see the
estimated correlations between times. These artheaictual correlations, which appear
below, but the estimates that come from an assumpficompound symmetry. That
assumption says that the correlations have to be emdalvhat we have here are
basically average correlations. Témtual correlations, averaged over the two groups
using Fisher’s transformation, are:

Estimated R Correlation Matrix for subj 1

Row Colf Col2 Col3 Col4

1 1.0000 0.5695 0.5351 -0.01683
2 0.5695 1.0000 0.8612 0.4456
3 0.5351 0.8612 1.0000 0.4202
4 -0.01683 0.4456 0.4202 1.0000

Notice that they are quite different from the onesiagng compound symmetry, and that
they don'’t look at all as if they fit that assumptid¥e will deal with this problem later.
(I don’'t have a clue why the heading refers to “subjtijtist does!)

There are also two covariance parameters. Remehditethere are two sources of
random effects in this design. There is our normal which reflects random noise. In
addition we are treating our subjects as a random saamgehere is thus random

variance among subjects. Here | get to play a bit @dffected mean squares. You may
recall that the expected mean squares for the errorfoertime between-subject effect is



E(MS,, uy ) = 0% +ao? and our estimate af? is MSesaua Which is 2781.8718. The

letter “a” stands for the number of measurement times = 4NVeBigh sunj = 12887.046.
Therefore our estimate af? = (12887.046-2781.8718)/4 = 2536.07. These two

estimates are our random part of the model and are giwbe section headed
Covariance Parameter Estimates. | don’t see a isituigi this example in which we
would wish to make use of these values, but in other mixgidrethey are useful.

You may notice one odd thing in the data. Instead of iagtéme as 1,2,3, & 4 | entered
itas 0, 1, 3, and 6. If this were a standard ANOVA it wotilchake any difference, and
in fact it doesn’t make any difference here, but wherc@ree to looking at intercepts
and slopes, it will be very important how we designabed) point. We could have
centered time by subtracting the mean time from eatly,evhich would mean that the
intercept is at the mean time. | have chosen to ralepresent the pretest, which seems
a logical place to find the intercept. | will say maitgout this later.

M ISSING DATA

| have just spent considerable time discussing a balancephaédsere all of the data are
available. Now | want to delete some of the data and ttezlanalysis. This is one of the
areas where mixed designs have an important advantage going to delete scores
pretty much at random, except that | want to show @ipattf different observations over
time. It is easiest to see what | have done if vo& lat data in the wide form, so the
earlier table is presented below with “.” representingsing observations. It is important
to notice that data are missing completely at randonpmdiie basis of other
observations.

Group Subj TimeO Timel Time3 Time6 Group Subj TimeO Timel Time3 Time6
1 296 175 187 242 13 282 186 225 134
2 376 329 236 126 14 317 31 85 120
3 309 238 150 173 15 362 104 . .

4 222 60 82 135 16 338 132 91 77
5 150 250 266 17 263 94 141 142
6
7
8
9

316 291 238 194 18 138 38 16 95
321 364 270 358 19 329 . . 6
447 402 . 266 20 292 139 104 .
220 70 95 137 21 275 94 135 137
10 375 335 334 129 22 150 48 20 85
11 310 300 253 . 23 319 68 67 .
12 310 245 200 170 24 300 138 114 174
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If we treat this as a standard repeated measures ar@lysigance, using Proc GLM, we
have a problem. Of the 24 cases, only 17 of them have etergidta. That means that
our analysis will be based on only those 17 cases. Asidea serious loss of power,
there are other problems with this state of affairs. Ssgplaat | suspected that people



who are less depressed are less likely to returnffoltoav-up session and thus have
missing data. To build that into the example | could deltegraleleted data from those
who scored low on depression to begin with, though | #ept pretest scores. (I did not
actually do this here.) Further suppose that people low ireglgipn respond to treatment
(or non-treatment) in different ways from those whe more depressed. By deleting
whole cases | will have deleted low depression subgatghat will result in biased
estimates of what we would have found if those origliada points had not been
missing. This is certainly not a desirable result.

To expand slightly on the previous paragraph, if we uBiog GLM , or a comparable
procedure in other software, we have to assume thaaataissing completely at
random, normally abbreviated MCAR. (See Howell, 2008 hdfdata are not missing
completely at random, then the results would be bidedif | can find a way to keep as
much data as possible, and if people with low preteses@re missing at one or more
measurement times, the pretest score will essens@itlye as a covariate to predict
missingness. This means that | only have to assume tlaaamiamissing at random
(MAR) rather than MCAR. That is a gain worth having. AR is quite rare in
experimental research, but MAR is much more commoimgus mixed model approach
requires only that data are MAR and allows me to retansiderable degrees of
freedom. (That argument has been challenged by OverBdinfdandel (2007), but in
this particular example the data actually are essgnkIAR. | will come back to this
issue later.)

Proc GLM results

The output from analyzing these data ustngc GLM follows. | give these results just
for purposes of comparison, and | have omitted mucheoptimtout.

Repeated Measures Analysis of Variance
Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F
group 1 126931.1767 126931.1767 8.97 0.0091
Error 15 212237.4410 14149.1627

Univariate Tests of Hypotheses for Within Subject Effects

Adj Pr > F
Source DF Type III SS Mean Square F Value Pr > F G -G H-F
time 3 201156.6493 67052.2164 27.34 <.0001 <.0001 <.0001
time*group 3 20665 .5905 6888.5302 2.81 0.0502 0.0696 0.0547
Error(time) 45 110370.8507 2452.6856
Greenhouse-Geisser Epsilon 0.7386
Huynh-Feldt Epsilon 0.9300

Notice that we still have a group effect and a timeatffbut we have lost our significant
interaction, which is what | cared most about. Alsacaothe big drop in degrees of
freedom due to the fact that we now only have 17 subjects.



Proc Mixed

Now we move to the results usiRgoc mixed. | need to modify the data file put it in its
long form and to replace missing observations with a gebot that means that | just
altered 9 lines out of 96 (10% of the data) instead of 7 fd24 ¢29%). The syntax would
look exactly the same as it did earlier. The presehttnte” on the repeated statement
iS not necessary if | have included missing data by usingi@dpéut it is needed if | just
remove the observation completely. (At least thahé way | read the manual.) The
results follow, again with much of the printout deleted

Proc Mixed data = wicklongMiss;
class group time subj;
model dv = group time group*time /s;
repeated time /subject = subj type = cs rcorr;
run;

Estimated R Correlation Matrix for subj 1

Row Coll Col2 Col3 Col4

1 1.0000 | 0.4640 | 0.4640 | 0.4640

2 0.4640 | 1.0000 | 0.4640 | 0.4640

3 0.4640 || 0.4640 | 1.0000 | 0.4640

4 0.4640 || 0.4640 | 0.4640 | 1.0000

Covariance Parameter Estimates

Cov Parm | Subject | Estimate

cS subj | 2558.27

Residual 2954.66




Fit Statistics

-2 Res Log Likelihood | 905.4

AIC (smaller is better) | 909.4

AICC (smaller is better) | 909.6

BIC (smaller is better) | 911.8

Null Model Likelihood Ratio Test

DF | Chi-Square | Pr > ChiSq

1 19.21 <.0001

Type 3 Tests of Fixed Effects

Effect Num DF || Den DF | F Value | Pr>F

group 1 22 16.53 0.0005
time 3 57 32.45 <.0001
group*time || 3 57 6.09 0.0011

This is a much nicer solution, not only because we hetagned our significance levels,
but because it is based on considerably more data antrisliant on an assumption that
the data are missing completely at random. Again yoa $eed pattern of correlations
between trials which results from my specifying compouwmdrsetry for the analysis.

Other Covariance Structures

To this point all of our analyses have been based onsamasion of compound
symmetry. (The assumption is really about spheribity,the two are close aittoc
Mixed refers to the solution dgpe = cs) But if you look at the correlation matrix given
earlier it is quite clear that correlations furtherrapatime are distinctly lower than
correlations close in time, which sounds like a redslenasult. Also if you looked at
Mauchly’s test of sphericity (not shown) it is sigoént withp = .012. While this is not a
great test, it should give us pause. We really ought tometsing about sphericity.



The first thing that we could do about sphericity is tacgpehat the model will make no
assumptions whatsoever about the form of the covariamatrix. To do this | will ask for
an unstructured matrix. This is accomplished by inclutipg = unin therepeated
statement. This will force SAS to estimate all of theiances and covariances and use
them in its solution. The problem with this is thagrhare 10 things to be estimated and
therefore we will lose degrees of freedom for our td3t$ | will go ahead anyway. For
this analysis | will continue to use the data set witksing data, though | could have
used the complete data had | wished. | will include a requasSAS use procedures due
to Hotelling-Lawley-McKeon (hlm) and Hotelling-Lawley-Pil&amson (hlps) which

do a better job of estimating the degrees of freedoradfodenominators for. This is
recommended for an unstructured model. The results arendtedaow.

Results using unstructured matrix

Proc M xed data = wi ckl ongM ss;

class group tine subj;

nodel dv = group tinme group*tine;

repeated time /subject = subj type = un hlmhlps rcorr;
run;

Estimated R Correlation Matrix for subj 1

Row Coll Col2 Col3 Col4

1 1.0000 0.5858 || 0.5424 || -0.02740

2 0.5858 1.0000 || 0.8581 || 0.3896

3 0.5424 0.8581 || 1.0000 | 0.3971

4 -0.02740 | 0.3896 | 0.3971 || 1.0000

Fit Statistics

-2 Res Log Likelihood | 883.7

AIC (smaller is better) | 903.7

AICC (smaller is better) | 906.9

BIC (smaller is better) | 915.5




Null Model Likelihood Ratio Test

DF | Chi-Square | Pr > ChiSq

9 40.92 <.0001

Type 3 Tests of Fixed Effects

Effect Num DF | Den DF | F Value | Pr>F
group 1 22 17.95 0.0003
timefact 3 22 28.44 <.0001
group*timefact | 3 22 6.80 0.0021

Type 3 Hotelling-Lawley-McKeon Statistics

Effect Num DF | Den DF | F Value | Pr>F
timefact 3 20 25.85 <.0001
group*timefact | 3 20 6.18 0.0038

Type 3 Hotelling-Lawley-Pillai-Samson Statistics

Effect Num DF | Den DF | F Value | Pr>F
timefact 3 20 25.85 <.0001
group*timefact | 3 20 6.18 0.0038

Notice the matrix of correlations. From posttest ® @month follow-up the correlation
with pretest scores has dropped from .59 to -.03, and thisrpettewnsistent. That
certainly doesn'’t inspire confidence in compound symmetry.

TheFs have not changed very much from the previous modelhbwedgrees of freedom
for within-subject terms have dropped from 57 to 22, whi@hhsge drop. That results
from the fact that the model had to make additionaledts of covariances. Finally, the



him and hlps statistics further reduce the degrees of freeal@6) but the effects are still
significant. This would make me feel pretty good abousthéy if the data had been real
data.

But we have gone from one extreme to another. We dsiihtevo covariance parameters
when we usetlype = csand 10 covariance parameters when we tigael= un. (Put
another way, with the unstructured solution we threwwphands and said to the
program “You figure it out! We don’t know what’s going ohere is a middle ground
(in fact there are many). We probably do know at leasteshing about what those
correlations should look like. Often we would expemtrelations to decrease as the trials
in question are further removed from each other. Thgythmot decrease as fast as our
data suggest, but they should probably decrease. An autoregrasslel, which we will
see next, assumes that correlations between any twe tlapend on both the correlation
at the previous time and an error component. To put tfiatafitly, your score at time 3
depends on your score at time 2 and error. (This istaofider autoregression model. A
second order model would have a score depend dmtharevious times plus error.) In
effect an AR(1) model assumes that if the correlabetmveen Time 1 and Time 2 is .51,
then the correlation between Time 1 and Time 3 haxpected value of .3% .26 and
between Time 1 and Time 4 has an expected value®af.513. Our data look reasonably
close to that. (Remember that these are expectedswafiuenot the actual obtained
correlations.) The solution using a first order autoregve model follows.

Proc M xed data = wi ckl ongM ss;

class group tine subj;

nodel dv = group tinme group*tine;
repeated time/subject = subj type = AR(1);
run;

Estimated R Correlation Matrix for group(subj)
11

Row Coll Col2 Col3 Col4

1 1.0000 | 0.6182 | 0.3822 | 0.2363

2 0.6182 1.0000 | 0.6182 | 0.3822

3 0.3822 | 0.6182 1.0000 | 0.6182

4 0.2363 | 0.3822 | 0.6182 1.0000




Covariance Parameter Estimates

Cov Parm Subject Estimate

AR(1) group(subj) || 0.6182

Residual 5350.25

Fit Statistics

-2 Res Log Likelihood | 895.1

AIC (smaller is better) | 899.1

AICC (smaller is better) | 899.2

BIC (smaller is better) | 901.4

Null Model Likelihood Ratio Test

DF | Chi-Square | Pr > ChiSq

1 29.55 <.0001

Type 3 Tests of Fixed Effects

Effect Num DF || Den DF | F Value | Pr>F

group 1 22 17.32 0.0004
time 3 57 30.82 <.0001
group*time || 3 57 7.72 0.0002

Notice the pattern of correlations. The .6182 as the ebiorlbetween adjacent trials is
essentially an average of the correlations betweerean trials in the unstructured case.
The .3822 is just .6182nd .2363 = .6182Notice that tests on within-subject effects are
back up to 5f, which is certainly nice, and our results are stilhgigant. This is a far
nicer solution than we had usiffgoc GLM .



Now we have three solutions, but which should we cHd@s® aid in choosing is to
look at the “Fit Statistics” that are printout outhlveach solution. These statistics take
into account both how well the model fits the data amd many estimates it took to get
there. Put loosely, we would probably be happier wiphedty good fit based on few
parameter estimates than with a slightly bettdydfged on many parameter estimates. If
you look at the three models we have fit for the unizadd design you will see that the
AIC criterion for thetype = csmodel was 909.4, which dropped to 903.7 when we
relaxed the assumption of compound symmetry. A smallénalue is better, so we
should prefer the second model. Then when we aimedrfoddle ground, by specifying
the pattern or correlations but not making SAS estirh@tseparate correlations, AIC
dropped again to 899.1. That model fit better, and the fatitttid so by only
estimating a variance and one correlation leads us ta pinetemodel.

SPSS Mixed

You can accomplish the same thing using SPSS if you ptefdf.not discuss the
syntax here, but the commands are given below. Youngatify this syntax by replacing
CS with UN or AR(1) if you wish.

MIXED

dv BY Group Time

/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1)

SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(O,
ABSOLUTE)

PCONVERGE(0.000001, ABSOLUTE)

[FIXED = Group Time Group*Time | SSTYPE(3)

/METHOD = REML

/PRINT = DESCRIPTIVES SOLUTION

/REPEATED = Time | SUBJECT(Subj) COVTYPE(CS)

/EMMEANS = TABLES(Group)

/EMMEANS = TABLES(Time)

/EMMEANS = TABLES(Group*Time) .

Analyses Using R

The following commands will run the same analysis usiregR program (or using S-
Plus). The results will not be exactly the same tbey are very close. Lines beginning
with # are comments.

# Analysis of Wicklund Data with missing values
data <- read.table(file.choose(), header = T)
attach(data)

Time = factor(Time)

Group = factor(Group)

Subj = factor(Subj)

library(nime)



model <- Ime(dv ~ Time + Group + Time*Group, random = Siikj)
#model2 <- update(model, correlation = corCompSymm(.388,fotih FSubyj))
# This line above leads to weird results and | don’t kindwy.
summary(model)

anova(model)

# This model is very close to the one produced by SAS usingaamd
#symmetry,

# when it comes to F values, and the log likelihood is#me. But the AIC

# and BIC are quite different. The StDev for the Randédfects are the same
# when squared. The coefficients are different because®the first level

# as the base, whereas SAS uses the last.

Mixed Models by a More Traditional Route

Because | was particularly interested in the analyisisr@ance, | approached the
problem of mixed models first by looking at the use ofrpeatedstatement ifProc
mixed. Remember that our main problem in any repeated measakysia is to handle
the fact that when we have several observations fhensame subject, our error terms
are going to be correlated. This is true whether ther@nees fit the compound
symmetry structure or we treat them as unstructureditoregressive. But there is
another way to get at this problem. Look at the corapldictitious data shown below.

tirnel | time2 | time3 | timed | timeS |
20.00 30.00 40.00 &0.00 70.00
&0.00 52.00 54.00 &R.00 &8.00
25.00 30.00 35.00 40.00 45.00
45.00 46.00 47.00 48.00 43.00
Now look at the pattern of correlations.
Correlations
timel time2 time3 time4 timeb
timel 1 .987(%) .902 .051 -.286
time2 .987(%) 1 .959(%) .207 -131
time3 .902 .959(%) 1 AT72 152
time4 .051 .207 AT2 1 .942
time5 -.286 -131 152 .942 1

* Correlation is significant at the 0.05 level (2-tailed).

Except for the specific values, these look like the patiee have seen before. |
generated them by simply setting up data for each subgadhdld a different slope. For
Subject 1 the scores had a very steep slope, where@slct 4 the line was almost

flat. In other words there was variance to the slodesl. all of the slopes been equal (the
lines parallel) the off-diagonal correlations would éd»een equal except for error, and



the variance of the slopes would have been 0. But wieeslbpes were unequal their
variance was greater than 0 and the times would beehtiaily correlated.

As | pointed out earlier, compound symmetry is assatidirectly with a model in

which lines representing changes for subjects over timpaaedlel. That means that
when we assume compound symmetry, as we do in a stangaede® measures design,
we are assuming that pattern for subjects. Their inteseway differ, but not their slopes.
One way to look at the analysis of mixed models itie with the expected pattern of
the correlations, as we did with thepeatedcommand. Another way is to look at the
variances in the slopes, which we will do with taedom command. With the
appropriate selection of options that results wilthe same.

We will start first with the simplest approach. Welwassume that subjects differ on
average (i.e. that they have different intercepts)thattthey have the same slopes. This
is really equivalent to our basic repeated measures AN®R&e we have a term for
Subjects, reflecting subject differences, but where @auragtion of compound
symmetry forces us to treat the data by assuming thag\evgubjects differ overall,
they all have the same slope. | am using the missingsdateere for purposes of
comparison.

Here we will replace the repeated command with thdaancommand. The “int” on the
random statement tells the model to fit a differetericept for each subject, but to
assume that the slopes are constant across subjasiseljuesting a covariance structure
with compound symmetry.

Proc M xed data = wi ckl ongM ss;

class group tine subj

nodel dv = group time group*tine/s;
randomint /subject = subj type = cs;
run;

Covariance Parameter Estimates

Cov Parm | Subject | Estimate

Variance subj 2677.70

cS subj | -119.13

Residual 2954 .57

Fit Statistics

-2 Res Log Likelihood | 905.4

AIC (smaller is better) | 911.4




Fit Statistics

AICC (smaller is better)

911.7

BIC (smaller is better)

914.9

Null Model Likelihood Ratio Test

DF

Chi-Square

Pr > ChiSqg

2

19.21

<.0001

Type 3 Tests of Fixed Effects
Effect Num DF | Den DF | F Value | Pr>F
group 1 57 16.52 0.0001
time 3 57 32.45 <.0001
group*time || 3 57 6.09 0.0011
Contrasts
Label Num DF | Den DF | F Value | Pr>F
time main effect | 3 57 32.45 <.0001
time linear 1 57 63.90 <.0001
time quadratic | 1 57 23.58 <.0001
time cubic 1 57 2.69 0.1067

These results are essentially the same as thofeuwe using the repeated command as
settingtype = cs By only specifying “int” as random we have not allowke slopes to
differ, and thus we have forced compound symmetry. We wayd tirtually the same

output even if we specified that the covariance stinedbe “unstructured.”

Now | want to go a step further. Here | am venturing iatatory that | know even less
well, but I think that | am correct in what follows.




Remember that when we specify compound symmetry we acéyspg a pattern that
results from subjects showing parallel trends over.tleewhen we replace our repeated
statement with a random statement and specify thtiSimhe only random component,
we are doing essentially what the repeated statedieeritVe are not allowing for
different slopes. But in the next analysis | am goinglimw slopes to differ by entering
“time” in the random statement along with “int.” WHawill obtain is a solution where
the slope of time has a variance greater than 0. dimenands for this analysis follow.
Notice two differences. We suddenly have a variable calletettont.” Recall that the
classcommand converts time to a factor. That is fine,fbuthe random variable | want
time to be continuous. So | have just made a copy of {gmak “time,” called it
“timecont,” and not put it in the class statement.id¢éothat | do not includetype = cs”
in the following syntax because by allowing for differslatpes | am allowing for a
pattern of correlations that do not fit the assumpdibcompound symmetry.

Proc M xed data = wi ckl ongM ss ;
class group tine subj

nodel dv = group tinme group*tine;
randomint timecont /subject = subj
run;

Fit Statistics

-2 Res Log Likelihood | 905.0

AIC (smaller is better) | 911.0

AICC (smaller is better) | 911.4

BIC (smaller is better) | 914.6

Type 3 Tests of Fixed Effects

Effect Num DF || Den DF | F Value | Pr>F

group 1 35 15.24 0.0004

time 3 35 31.70 <.0001

group*time || 3 35 6.53 0.0013




Notice that the pattern of resuisssimilar to what we found in the earlier analyses.
However we only have 38 for error for each test, and our AIC fit statigg®11.0,
which is higher than for other models and represents a pitoidy preference would be
to stay with the AR1 structure on the repeated commarat.ldbks to me to be the best
fitting model and one that makes logical sense.

There is one more approach recommended by Guerin angp$2@@0). They suggest
that when we are allowing a model that hag\R{1) or UN covariance structure, we
combine the random and repeated commands in the samecaandig to Littell et al.,
they showed that “a failure to model a separate betwebjects random effect can
adversely affect inference on time and treatment & &iffects.”

This analysis would include both kinds of terms and awhbelow:

proc m xed data = wi ckl ongM ss;

class group tine subj

nodel dv = group tinmefact group*timne/solution;
random subj (group);

repeated time/ type = AR(1) subject = subj(group);
run;

Partial results follow:

Covariance Parameter Estimates

Cov Parm Subject Estimate

subj(group) 0

AR(1) subj(group) | 0.6182

Residual 5349.89

Fit Statistics

-2 Res Log Likelihood | 895.1

AIC (smaller is better) | 899.1

AICC (smaller is better) | 899.2

BIC (smaller is better) | 901.4




Type 3 Tests of Fixed Effects
Effect Num DF | Den DF | F Value | Pr>F
group 1 22 17.32 0.0004
time 3 57 30.82 <.0001
group*time || 3 57 7.72 0.0002

You may have noticed something interesting about theskts.eBhese are exactly the
same results that we obtained when we used

Proc M xed data = wi ckl ongM ss;
class group tine subj;

nodel dv = group tinme group*tine;
repeated time /subject = subj type = AR(1);
run;

which is the same commands without the random stateéry then do we need the
random statement if it is going to return the same aisdy don’t know, and I’'m not
alone—see below.

Solution for fixed effects

| have deliberately avoided talking about the section@btltput labeled “Solution for
fixed effects,” and have actually left off teelution command in the analyses that | have
run. But now is the time to at least explain what yee there.

| will use the type = AR(1) command on tiepeatedstatement because that produces
the best fit for our data. | will also add a command totjmut least squares estimates of
cell means because they will be necessary to undenstaatdhe fixed effects are. The
commands and the relevant part of the printout folldvave added thismeans

command so that the program will print out the least reguaeans estimates for the two-
way table.

Proc M xed data = w ckl ongM ss ;

class group tine subj;

nodel dv = group time group*time /solution;
repeat ed /subject = group(subj) type = AR(1)
| sneans group*ti e;

run;

rcorr;



Covariance Parameter Estimates
Cov Parm Subject Estimate
subj(group) 0
AR(1) subj(group) | 0.6182
Residual 5349.89
Fit Statistics
-2 Res Log Likelihood | 895.1
AIC (smaller is better) | 899.1
AICC (smaller is better) | 899.2
BIC (smaller is better) | 901.4

Solution for Fixed Effects

Effect group | time | Estimate Standard DF | t Value | Pr > [t]
Error
Intercept 106.64 23.4064 22 | 4.56 0.0002
group 1 95.0006 | 31.9183 22 | 2.98 0.0070
group 2 0
time 0 173.78 27.9825 57 [ 6.21 <.0001
time 1 -8.9994 26.0818 57 | -0.35 0.7313
time 3 -10.8539 | 21.6965 57 | -0.50 0.6188
time 6 0
group*time 1 0 -71.0839 | 38.5890 57 | -1.84 0.0707
group*time 1 1 57.7765 | 35.6974 57 [ 1.62 0.1111
group*time 1 3 26.6348 | 29.2660 57 [ 0.91 0.3666




Solution for Fixed Effects

Effect group | time | Estimate Standard DF | t Value | Pr > [t]
Error
group*time 1 6 0
group*time 2 0 0
group*time 2 1 0
group*time 2 3 0
group*time 2 6 0
Type 3 Tests of Fixed Effects
Effect Num DF | Den DF | F Value | Pr>F
group 1 22 17.32 0.0004
time 3 57 30.82 <.0001
group*time || 3 57 7.72 0.0002
Least Squares Means
Effect group | time | Estimate Standard DF | t Value | Pr > [t]
Error
group*time 1 0 304.33 21.1146 57 || 14.41 <.0001
group*time 1 1 250.41 21.5400 57 || 11.63 <.0001
group*time 1 3 217.42 21.5410 57 | 10.09 <.0001
group*time 1 6 201.64 21.7007 57 [ 9.29 <.0001
group*time 2 0 280.42 21.1146 57 || 13.28 <.0001
group*time 2 1 97.6361 | 21.6454 57 | 4.51 <.0001
group*time 2 3 95.7817 | 22.2942 57 [ 4.30 <.0001
group*time 2 6 106.64 23.4064 57 || 4.56 <.0001




Because of the way that SAS or SPSS sets up dummy eari@blepresent treatment
effects, the intercept will represent the cell for thst time and the last group. In other
words cells. Notice that that cell mean is 106.64, which is alsarttexcept. The effect
for Group 1 is the difference between the mean ofas$tetime in the first group (cell

and the intercept, which equals 201.64 — 106.64 = 95.00(within roundory. 8hat is
the treatment effect for group 1 given in the soluteestion of the table. Because there
is only 1df for groups, we don’t have a treatment effect for graughough we can
calculate it as -95.00 because treatment effects saerto For the effect of Time 0, we
take the deviation of the cell for Time O for the lgiup (group 2) from the intercept,
which equals 280.42 — 106.64 = 173.78. For Times 2 and 3 we would $UiotBa64

from 97.6361 and 95.7817, respectively, giving -8.9994 and -10.8539. \Wfittoi3

Time, we don’t have an effect for Time 4, but again @e gbtain it by subtraction as 0 —
(173.78-8.9994-10.8539) = -53.9267. For the interaction effects weelikmeans

minus row and column effects. So for Timeve have 304.33-(95.00 + 173.78 +106.64)
= -71. Similarly for the other interaction effects.

| should probably pay a great deal more attention to tiheament effects, but | will not
do so. If they were expressed in terms of deviations fhengtand mean, grand mean,
rather than with respect to cgll could get more excited about them. (If SAS set up its
design matrix differently they would come out that wayt they don't here.) | know
that most statisticians will come down on my headiaking such a statement, and
perhaps | am being sloppy, but | think that | get more inébion from looking at cell
means andr statistics.

And now the big “BUT!”

Well after this page was originally written and | thoutjtatt | had everything all figured
out (well, I didn’t really think that, but | hoped), | daeered that life is not as simple as
we would like it to be. The classic book in the field.igell et al. (2006). They have
written about SAS in numerous books, and some of therkaslaon the development of
Proc Mixed. However others who know far more statistics thanlllewver learn, and
who have used SAS for years, have had great difficaltfeciding on the appropriate
ways of writing the syntax. An excellent paper in tieigard is Overall, Ahn,
Shivakumar, & Kalburgi (1999). They spent 27 pages trying to decideeocorrect
analysis and ended up arguing that perhaps there is awasténan using mixed models
anyway. Now they did have somewhat of a special problecause they were running
an analysis of covariance because missing data was depangmnt, on baseline
measures. However other forms of analyses will alloxaréable to be both a dependent
variable and a covariate. (If you try this with SPS8 wall be allowed to enter Timel as
a covariate, but the solution is exactly the saméyasuihad not. | haven't yet tried this
is R or S-Plus.) This points out that all of the agmsnaare not out there. If John Overall
can't figure it out, how are you and | supposed to?

That last paragraph might suggest that | should just elisnthé& whole document, but
that is perhaps too extrenferoc Mixed is not going to go away, and we have to get used



to it. All that | suggest is a bit of caution. But if yoa @ant to consider alternatives, look
at the Overall et al. paper and read what they haveytalxaut what they call Two-Stage
models. Then look at other work that this group has done.

But | can't leave this without bringing in one more cdiogtion. Overall & Tonidandel
(2007) recommend a somewhat different solution by using @ncoms measure of time
on the model statement. In other words, specifying tim#herlass variable turns time
into a factor with 4 levels. If | had earlier said ¢éioont = time in a data statement, then
Overall & Tonidandel would have me specify the moddkstent asnodel dv = group
timecont group*timecont. / solution; Littell et al. 2006 refer to this as “Comparisons
using regression,” but it is not clear, other than $b menlinearity, why we would do
this. It is very close to, but not exactly the sameadsst of linear and quadratic
components. (For quadratic you would need to include’tame its interaction with
group.) It yields a drastically different set of resuWwith 1df for timecont and for
timecontxgroup. The df is understandable because you have one degree of freedom f
each contrast. The timecont x group interaction ilose to significant, whichhay

make sense if you look at the plotted data, but I'm navic@ed. | am going to stick with
my approach, at least for now.

The SAS printout follows based on the complete (netrhissing) data.

Type 3 Tests of Fixed Effects
Effect Num DF | Den DF | F Value | Pr>F
group 1 22 9.80 0.0049
timecont 1 70 29.97 <.0001
timecont*group | 1 70 0.31 0.5803

Compare this with thBroc GLM solution for linear trend given earlier.

Contrast Variable: time_1 The Linear Effect of Time (intervals = 0,1,2,3)

Source DF Type III SS Mean Square F Value Pr > F
Mean 1 168155.6270 168155.6270 36.14 <.0001
group 1 1457.2401 1457.2401 0.31 0.5814
Error 22 102368.7996 4653.1273

They are not the same, though they are very closlan(t know why they aren’t the
same, but | suspect that it has to do with the fa¢tRh@ec GLM uses a least squares
solution whileProc Mixed uses REML.) Notice the different degrees of freedom for
error, and remember that “mean” is equivalent to “tinm€tand “group” is equivalent to
the interaction.




What about imputation of missing values?

There are many ways of dealing with missing values (Hp@@08), but a very common
approach is known as Estimation/Maximization (EM). Teadie what EM does in a
very few sentences, it basically uses the means andast deviations of the existing
observations to make estimates of the missing valueegngl those estimates changes the
mean and standard deviation of the data, and those nens imed standard deviations

are used as parameter estimates to make new predicidhe foriginally) missing

values. Those, in turn, change the means and variandes new set of estimated values
is created. This process goes on iteratively untibibiszes.

| used a (freely available) program cald@RM (Shafer & Olson, 1998) to impute new
data for missing values. | then took the new data, whahavwcomplete data set, and
usedProc GLM in SAS to run the analysis of variance on the cetepl data set. |
repeated this several times to get an estimate ofte@ity in the results. The resulting
Fs for three replications are shown below, along withresults of usingroc Mixed on
the missing data with an autoregressive covariance steugta simply using the
standard ANOVA with all subjects having any missing datateiéle

Replication 1 | Replication 2 | Replication 3 AR1 With
Missing
Group 17.011 15.674 18.709 18.03 8.97
Time 35.459 33.471 37.960 29.55 27.34
Group * 5.901 5.326 7.292 7.90 2.81
Time

| will freely admit that | don’t know exactly how &valuate these results, but they are at

least in line with each other except for the last mwlwhen uses casewise deletion. |
find them encouraging.

| need to add a section on references. Some good ones welthare:

http://www.uoregon.edu/~robinh/mixed sas.html

http://www.ats.ucla.edu/stat/sas/fag/anovmixl.htm

http://www.ats.ucla.edu/STAT/SAS/library/mixedglm.pdf

http://ssc.utexas.edu/consulting/answers/sas/sas94.html

http://quiro.uab.es/jpa/pdf/Littell mixed JAS.pdf

Good coverage of alternative covariance structures
http://cda.morris.umn.edu/~anderson/math4601/gopher/SAS/ltzdgotactures. pdf




The main reference for SARoc Mixed is

Little, R.C., Milliken, G.A., Stroup, W.W., WolfingeR.D., & Schabenberger, O. (2006)
SASfor mixed models, Cary, NC SAS Institute Inc.

The Overall et al. reference that | referred to is

Overall, J. E., Ahn, C., Shivakumar, C., & Kalburgi,(¥999). Problematic formulations
of SAS Proc.Mixed models for repeated measuremdoisnal of Biopharmaceutical
Satistics, 9, 189-216. (That probably is not a journal that you read morghly basis,

but the article is not too technical.)

The classic reference f& is Penheiro, J. C. & Bates, D. M. (2000ixed-effects models
in Sand S-Plus. New York: Springer.

For imputation the best reference is

Shafer, J. L. & Olson, M. K. (1998). Multiple imputatifor multivariate missing-data
problems: A data analysts perspectMeltivariate Behavioral Research, 33, 545-571.



